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First passage percolation model on Zd

Consider the d-dimensional square lattice Zd where each edge
has an i.i.d. nonnegative weight from a fixed distribution F .

For a path P, the passage time for P is defined as the sum of
weights over all the edges in P.

For x, y ∈ Zd , the first-passage time a(x, y) is defined as the
minimum passage time over all paths from x to y.
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Mean behavior

The model was introduced by Hammersley and Welsh in 1965,
where they proved that for all x ∈ Zd

ν(x) = lim
n→∞

1

n
E(a(0, nx))

exists and is finite when the edge weights have finite mean.

Kesten(’86) proved that, ν(x) > 0 iff F (0) < pc(d) where
pc(d) is the critical probability for bond percolation in Zd .

The shape theorem by Cox and Durrett(’81) says that

1

t
{x ∈ Zd : a(0, x) ≤ t} ⊕

[
−1

2
,

1

2

]d
t→∞−→ B

where B = {x : ν(x) ≤ 1} is a convex subset in Rd .
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Shape Theorem

Figure: Limiting shape for {x ∈ Zd : a(0, x) ≤ t}.
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First passage percolation on a torus

Space is Λ(N) = (Z mod N)2.

Suppose one agent is present at each vertex of Λ(N).

At time 0 the center receives an information.

Each neighbor of the center gets the information
independently at a constant rate λ.

In general, whenever a vertex is informed, each of its
uninformed neighbor gets the information independently at
rate λ.

ξt is the set of vertices informed by time t. ξ0 = {(0, 0)}.

Questions:

How does ξt grow?

When ξt = Λ(N)?

If TN is the time when every agent on the torus is informed, then
TN/N converges to a number.
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Short-long FPP on Λ(N) (Aldous ’07)

State of the process is ξt ⊂ Λ(N), the set of informed vertices
at time t. ξ0 = {(0, 0)}.
Information spreads from vertex i to j at rate νij , where

νij =

{
1/4 if j is a (nearest) neighbor of i

λN/(N2 − 5) if not.

If a vertex gets the information from a non-neighbor, we call it
a new ‘center’ for information spreading.

So each informed vertex tries to spread the information locally
at rate 1 and give birth to new centers at rate λN .

Question: How does ξt grow?
How does TN (cover time of the torus) scale?
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Our model (‘balloon process Ct ’)

To simplify:

we remove randomness from nearest neighbor growth

we formulate on the (real) torus Γ(N) = (R mod N)2.

The state of our process at time t is Ct ⊂ Γ(N), the subset
informed by time t.

Ct starts with one center chosen uniformly from Γ(N) at time
0.

Each center is the center of growing disks, whose radius r(·)
grows deterministically and linearly. We take r(s) = s/

√
2π.

At time t, birth rate of new centers is λN |Ct | = λNCt .

The location of each new center is chosen uniformly from the
torus.

If the new center lands at x ∈ Ct , it has no effect. But we
count all centers in X̃t .
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Phase transition

Consider λN = N−α.
Case 1: α > 3.

If the diameter of Ct grows linearly, then
∫ c0N

0
Ct dt = O(N3).

So w.h.p. no new center will be born before the initial disk
covers the entire torus, and
the cover time satisfies

TN

N
P→√π.

Case 2: α = 3.
with probabilities bounded away from 0, (i) no new center will
be born and TN ≈

√
πN, and (ii) there will be O(1) many

landing close enough to (N/2,N/2) to make
TN ≤ (1− δ)

√
πN.

TN/N converges weekly to a random variable with support
[0,
√
π] and an atom at

√
π.

Case 3: α < 3.
Many new centers will be born.
The cover time is significantly accelerated.
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Asymptotic behavior in ‘α < 3’ case

Theorem (C. and Durrett; AoAP 2011)

For α < 3, the cover time TN satisfies

TN

Nα/3 log N

P→ 2− 2α/3.

There is a positive random variable M such that if time is
shifted by (2− 2α/3) log N − log M and sped up by Nα/3,
then the fraction of covered area is approximately a
deterministic distribution function h(·) on (−∞,∞).

More precisely, for
ψ(t) = Nα/3[(2− 2α/3) log N − log M] + Nα/3t and δ > 0,

lim
N→∞

P

(
sup
s≤t
|N−2Cψ(s) − h(s)| ≤ δ

)
= 1.
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Branching balloon process At

Overlaps among the disks in Ct make it difficult to study.

We begin by studying much simpler balloon branching process
At .

In the process At ,

we do not ignore any center (unlike in Ct),

Xt denotes the number of centers at time t,

At =
∫ t

0 (t− s)2/2 dXs = total area of all disks born by time t,

new centers are born at rate N−αAt at uniformly chosen
locations.

We couple Ct and At so that

they start from the same point, and

Ct ⊂ At ,Ct ≤ At , X̃t ≤ Xt ∀t ≥ 0. (Recall X̃t = # centers in
Ct)
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Properties of At

Let λ = N−α.

Let Lt :=
∫ t

0 Xs ds be the length process. Then

At =
∫ t

0 (t − s)2/2 dXs =
∫ t

0 Ls ds.
Using i.i.d. behavior of all the centers,

Xt = 1 +
∑

i :si∈Πt

X i
t−si ,

where Πt ⊂ [0, t] is the set of time points when the initial disk
gives birth to new centers, and X i s are i.i.d. copies of X .

A little Poisson process computation shows that

EXt = 1+

∫ t

0
EXt−s λ

s2

2
ds, as area of initial disk at time s is

s2

2
.

Solving the renewal equation

EXt =
∞∑
k=0

λkt3k

(3k)!
.
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Properties of At (continued)

Solving the ODE v ′′′ = λv , (ω, ω2 are complex cube roots of
1)

EXt =
1

3

[
exp(λ1/3t) + exp(λ1/3ωt) + exp(λ1/3ω2t)

]
, and so

EAt =
λ−2/3

3

[
exp(λ1/3t) + ω exp(λ1/3ωt) + ω2 exp(λ1/3ω2t)

]
,

(Xt , Lt ,At) is a Markov process.

If Fs = σ{Xr , Lr ,Ar : r ≤ s}, then

d

dt
E

 Xt

Lt

At

∣∣∣∣∣∣Fs

∣∣∣∣∣∣
t=s

= Q

Xs

Ls

As

 , where Q =

0 0 λ
1 0 0
0 1 0

 .

The left eigenvalues of Q are η = λ1/3, λ1/3ω, λ1/3ω2 with
eigenvector (1, η, η2).

From Dynkin;s formula, e−ηt(Xt + ηLt + η2At) is a (complex)
martingale.
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The random variable M

Theorem

Mt := exp(−λ1/3t)(Xt + λ1/3Lt + λ2/3At) is a positive
L2-martingale, and so

1 Mt → M a.s. and in L2,

2 M does not depend on λ and

3 P(M > 0) = 1,

4 Xt/EXt , Lt/ELt ,At/EAt → M a.s. and in L2.
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Hitting time

τ(ε) = inf{t : Ct ≥ εN2}. We compare it with

σ(ε) := inf{t : At ≥ εN2}.

EAt ∼ a(t) = (1/3)N2α/3 exp(N−α/3t), and let

S(ε) := Nα/3[(2−2α/3) log N+log(3ε)] so that a(S(ε)) = εN2.

Using the L2 convergence we have nice estimates for
P(supt≥u |At/a(t)−M| > γ) which in turn gives:

Lemma

If 0 < ε < 1, then as N →∞

N−α/3(σ(ε)− S(ε))
P→ − log(M).

The coupling between Ct and At implies τ(ε) ≥ σ(ε).
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Cone argument for upper bound for τ(ε)

Need to bound the difference
At − Ct .

x is covered at time t
by a center born at
time s if

the center lies in the
corresponding cross section
of the space-time cone
Kx ,t := {(y , s) ∈ Γ(N)× [0, t] :

|y − x | ≤ (t − s)/
√

2π
}

.

0

t

s

sx

time

6

vertices of the graph

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

�
�
�
�
�
�
�
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Upper bound for τ(ε) (continued)

So P(x 6∈ Ct |s0, s1, s2, . . .) =
∏
i :si≤t

[
1− (t − si )

2

2N2

]

≤ exp

−∑
i :si≤t

(t − si )
2

2N2

 .

This together with the inequality 1− e−x ≥ x − x2/2 gives

ECt ≥ N2E

[
1− exp

(
−
∫ t

0

(t − s)2

2N2
dX̃s

)]
≥ t2

2
+

∫ t

0

(t − s)2

2
λECsds − EA2

t

2N2
.

Also EAt =
t2

2
+

∫ t

0

(t − s)2

2
λEAs ds.

So EAt − ECt satisfies a renewal inequality.
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Upper bound for τ(ε) (continued)
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Upper bound for τ(ε) (continued)

From the last argument

ECt ≥ EAt − C
a2(t)

N2
.( recall EAt ∼ a(t))

Using Markov inequality we can bound At − Ct , and have

Lemma

For any γ > 0,

lim supN→∞ P[τ(ε) > σ((1 +γ)ε)] ≤ P
(
M ≤ (1 + γ)ε1/3

)
+ C ε1/3

γ .

Remark: So τ(ε) ∼ (2− 2α/3)Nα/3 log N.
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How does Ct/N
2 grow?

Choose ψ(t) := Nα/3[(2− 2α/3) log N − log(M) + t] so that

N−2Aψ(t)
P→ et/3,−∞ < t <∞.

In particular for W = ψ(log(3ε)), N−2AW
P→ ε.

If ε is small, then the bound on At − Ct suggests
CW ≈ (ε− O(ε2))N2 w. h. p.

To study the growth of Ct after time W ,

call the centers present at time W ‘generation 0 centers’.

For k ≥ 1, generation k centers are those which are born
from area covered by generation (k − 1) centers.

Def: For k ≥ 0 let C k
W ,ψ(t) (resp Ak

W ,ψ(t)) be the area covered in Ct
(resp At ) by centers of generations j ∈ {0, 1, . . . , k}.
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Estimates for area covered by generation 0 centers

A0
W ,ψ(t)can be expressed in terms of XW , LW and AW , and using

their limiting behavior if

g0(t) := ε[1 + (t − log(3ε)) + (t − log(3ε))2/2], then

N−2A0
W ,ψ(s)

P→ g0(s) uniformly for s ∈ [log(3ε), t].

Using another cone argument we bound EA0
s,t − EC 0

s,t , which
shows that if η > 0 is small, then

w.h.p. N−2
(

C 0
W ,ψ(s) − A0

W ,ψ(s)

)
≥ −ε1+η ∀ s ∈ [log(3ε), t].

So for small ε, g0(t) and f0(t) := g0(t)− ε1+η provide upper and
lower bounds respectively for N−2C 0

W ,ψ(t) w.h.p.
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Lower bound for C 1
W ,ψ(t)

A point x 6∈ C1
W ,ψ(t), if x 6∈ C0

W ,ψ(t) and no generation 1 center is
born in the space-time cone

K ε
x ,t ≡

{
(y , s) ∈ Γ(N)× [W , ψ(t)] : |y − x | ≤ (ψ(t)− s)/

√
2π
}
.

Comparing with an appropriate Poisson process,

w.h.p. N−2C 1
W ,ψ(s) ≥ f1(s)− δ ∀ s ∈ [log(3ε), t].

for any δ > 0 and small ε, where

1− f1(t) = (1− f0(t)) exp

(
−
∫ t

log(3ε)

(t − s)2

2
f0(s) ds

)
.
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Lower bound for Cψ(t)

The last argument can be iterated. {fk(·)} satisfying

1−fk+1(t) = (1−fk(t)) exp

(
−
∫ t

log(3ε)

(t − s)2

2
(fk(s)− fk−1(s)) ds

)

provides a lower bound for C k
W ,ψ(·).

fk ↑ fε uniformly, where fε satisfies

fε(t) = 1− (1− f0(t)) exp

(
−
∫ t

log(3ε)

(t − s)2

2
fε(s) ds

)

with fε(log(3ε)) = ε− ε1+η. Choosing k large and ε small, for any
δ > 0,

w.h.p. N−2Cψ(s) ≥ fε(s))− δ ∀ s ∈ [log(3ε), t].
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Upper bound for Cψ(t)

Recall that g0(·) = ε[1 + (· − log(3ε)) + (· − log(3ε))2/2] is an
upper bound of C 0

W ,ψ(t). Following the argument for lower bound

and noting that C k
W ,ψ(t) ↑ Cψ(t) uniformly in k , if

gε(t) = 1− (1− g0(t)) exp

(
−
∫ t

log(3ε)

(t − s)2

2
gε(s) ds

)
, then

w.h.p. N−2Cψ(s) ≤ gε(s) + δ ∀ s ∈ [log(3ε), t].
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Limiting behavior of Cψ(t)

gε(t) and fε(t) provide upper and lower bounds for Cψ(t). In the
limit as ε→ 0 both the bounds converge to the same thing.
Let hε(t) = et/3 for t < log(3ε).

hε(t) = 1−exp

(
−
∫ log(3ε)

−∞

(t − s)2

2

es

3
ds −

∫ t

log(3ε)

(t − s)2

2
hε(s) ds

)

for t ≥ log(3ε). Then as ε→ 0,

fε(s)−hε(s) and gε(s)−hε(s)→ 0 uniformly in s ∈ [log(3ε), t], and

hε(t)→ h(t) satisfying (a) limt→−∞ h(t) = 0 (b) limt→∞ h(t) = 1
(c) h is increasing with 0 < h(t) < 1 and

(d) h(t) = 1− exp

(
−
∫ t

−∞

(t − s)2

2
h(s) ds

)
.
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Limiting behavior of Cψ(t)

The upper and lower bounds for Cψ(·) can be combined to have

lim
N→∞

P

(
sup
s≤t
|N−2Cψ(s) − h(s)| ≤ δ

)
= 1

for any t <∞ and δ > 0

Remarks:

The displacement of τ(ε) from (2− 2α/3)Nα/3 log N on the
scale Nα/3 is dictated by the random variable M that gives
the rate of growth of the balloon branching process.

Once Ct reaches εN2, the growth is deterministic.

There is a cutoff phenomenon as the fraction of covered area
reaches a small level in time O(Nα/3 log N) and then onwards
it increases to 1 within time O(Nα/3).
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The cover time TN

h(t) never reaches 1.

Since N−2Cψ(s) ∼ h(s), the number of centers in Cψ(0)

dominates a Poisson random variable with mean

λ(δ)N2−2α/3, where λ(δ) =

∫ 0

−∞
(h(s)− δ)+ ds,

which are uniformly distributed in the torus.

If δ > 0 is small, then λ(δ) > 0.

Divide the torus into smaller squares with side κNα/3
√

log N.

With high probability each of the small squares owns at least
one center at time ψ(0).

This makes TN ≤ ψ(0) + O(Nα/3
√

log N), and so

TN/Nα/3 log N → 2− 2α/3.
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Thank You
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