Asymptotic behavior of Aldous' gossip process

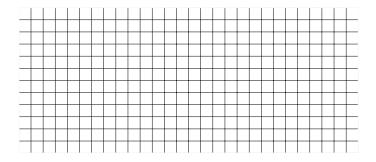
Shirshendu Chatterjee

Courant Institute of Mathematical Sciences, New York University

Joint work with Rick Durrett

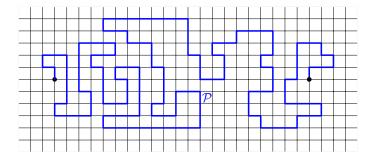
Conference on Limit Theorems in Probability, IISC

First passage percolation model on \mathbb{Z}^d



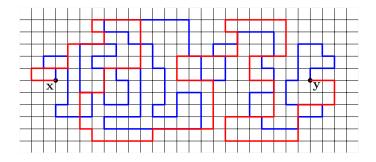
• Consider the *d*-dimensional square lattice \mathbb{Z}^d where each edge has an i.i.d. nonnegative weight from a fixed distribution *F*.

First passage percolation model on \mathbb{Z}^d



- Consider the *d*-dimensional square lattice \mathbb{Z}^d where each edge has an i.i.d. nonnegative weight from a fixed distribution *F*.
- For a path \mathcal{P} , the passage time for \mathcal{P} is defined as the sum of weights over all the edges in \mathcal{P} .

First passage percolation model on \mathbb{Z}^d



- Consider the *d*-dimensional square lattice \mathbb{Z}^d where each edge has an i.i.d. nonnegative weight from a fixed distribution *F*.
- For a path \mathcal{P} , the passage time for \mathcal{P} is defined as the sum of weights over all the edges in \mathcal{P} .
- For x, y ∈ Z^d, the first-passage time a(x, y) is defined as the minimum passage time over all paths from x to y.

Mean behavior

• The model was introduced by Hammersley and Welsh in 1965, where they proved that for all $\mathbf{x} \in \mathbb{Z}^d$

$$\nu(\mathbf{x}) = \lim_{n \to \infty} \frac{1}{n} \mathbb{E}(a(\mathbf{0}, n\mathbf{x}))$$

exists and is finite when the edge weights have finite mean.

• The model was introduced by Hammersley and Welsh in 1965, where they proved that for all $\mathbf{x} \in \mathbb{Z}^d$

$$\nu(\mathbf{x}) = \lim_{n \to \infty} \frac{1}{n} \mathbb{E}(a(\mathbf{0}, n\mathbf{x}))$$

exists and is finite when the edge weights have finite mean.

• Kesten('86) proved that, $\nu(\mathbf{x}) > 0$ iff $F(0) < p_c(d)$ where $p_c(d)$ is the critical probability for bond percolation in \mathbb{Z}^d .

• The model was introduced by Hammersley and Welsh in 1965, where they proved that for all $\mathbf{x} \in \mathbb{Z}^d$

$$\nu(\mathbf{x}) = \lim_{n \to \infty} \frac{1}{n} \mathbb{E}(a(\mathbf{0}, n\mathbf{x}))$$

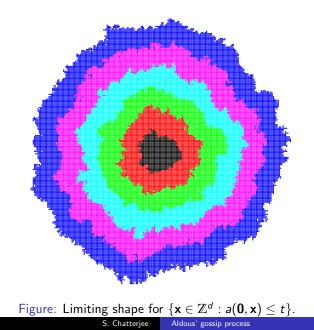
exists and is finite when the edge weights have finite mean.

- Kesten('86) proved that, $\nu(\mathbf{x}) > 0$ iff $F(0) < p_c(d)$ where $p_c(d)$ is the critical probability for bond percolation in \mathbb{Z}^d .
- The shape theorem by Cox and Durrett('81) says that

$$\frac{1}{t}\{\mathbf{x}\in\mathbb{Z}^d:a(\mathbf{0},\mathbf{x})\leq t\}\oplus\left[-\frac{1}{2},\frac{1}{2}\right]^d\overset{t\to\infty}{\longrightarrow}B$$

where $B = \{\mathbf{x} : \nu(\mathbf{x}) \leq 1\}$ is a convex subset in \mathbb{R}^d .

Shape Theorem



First passage percolation on a torus

- Space is $\Lambda(N) = (\mathbb{Z} \mod N)^2$.
- Suppose one agent is present at each vertex of $\Lambda(N)$.
- At time 0 the center receives an information.
- Each neighbor of the center gets the information independently at a constant rate λ.
- In general, whenever a vertex is informed, each of its uninformed neighbor gets the information independently at rate λ.
- ξ_t is the set of vertices informed by time t. $\xi_0 = \{(0,0)\}$.

First passage percolation on a torus

- Space is $\Lambda(N) = (\mathbb{Z} \mod N)^2$.
- Suppose one agent is present at each vertex of $\Lambda(N)$.
- At time 0 the center receives an information.
- Each neighbor of the center gets the information independently at a constant rate λ.
- In general, whenever a vertex is informed, each of its uninformed neighbor gets the information independently at rate λ .
- ξ_t is the set of vertices informed by time t. $\xi_0 = \{(0,0)\}$.

Questions:

- How does ξ_t grow?
- When $\xi_t = \Lambda(N)$?

If T_N is the time when every agent on the torus is informed, then T_N/N converges to a number.

Short-long FPP on $\Lambda(N)$ (Aldous '07)

- State of the process is ξ_t ⊂ Λ(N), the set of informed vertices at time t. ξ₀ = {(0,0)}.
- Information spreads from vertex *i* to *j* at rate ν_{ij} , where

$$\nu_{ij} = \begin{cases} 1/4 & \text{if } j \text{ is a (nearest) neighbor of } i \\ \lambda_N/(N^2 - 5) & \text{if not.} \end{cases}$$

- If a vertex gets the information from a non-neighbor, we call it a new 'center' for information spreading.
- So each informed vertex tries to spread the information locally at rate 1 and give birth to new centers at rate λ_N .

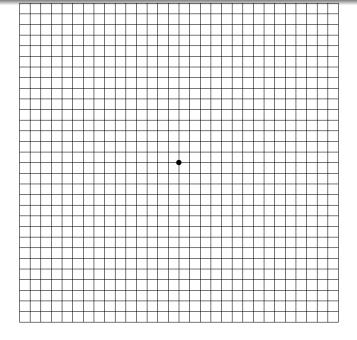
Short-long FPP on $\Lambda(N)$ (Aldous '07)

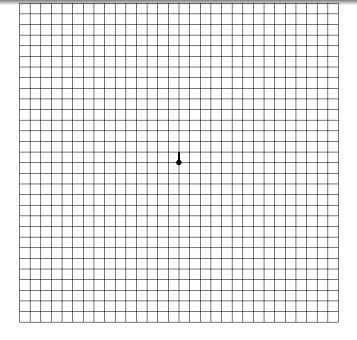
- State of the process is ξ_t ⊂ Λ(N), the set of informed vertices at time t. ξ₀ = {(0,0)}.
- Information spreads from vertex i to j at rate ν_{ij} , where

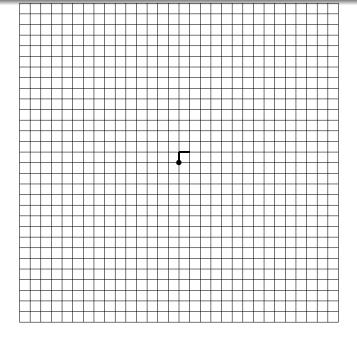
$$\nu_{ij} = \begin{cases} 1/4 & \text{if } j \text{ is a (nearest) neighbor of } i \\ \lambda_N/(N^2 - 5) & \text{if not.} \end{cases}$$

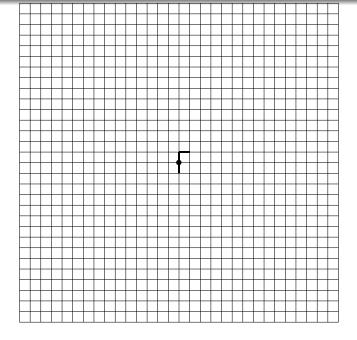
- If a vertex gets the information from a non-neighbor, we call it a new 'center' for information spreading.
- So each informed vertex tries to spread the information locally at rate 1 and give birth to new centers at rate λ_N .

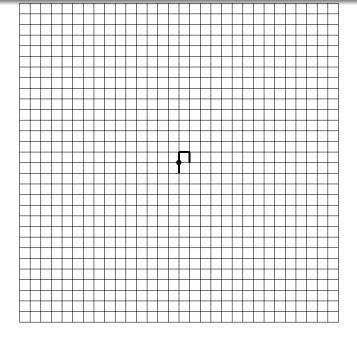
Question: How does ξ_t grow? How does T_N (cover time of the torus) scale?

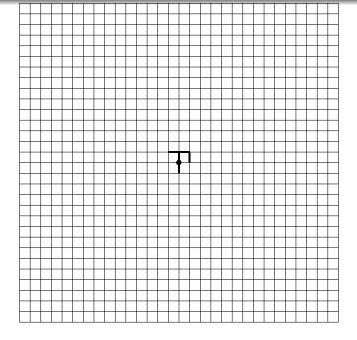


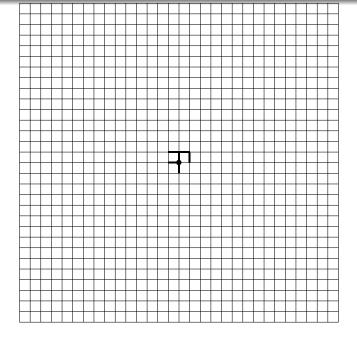


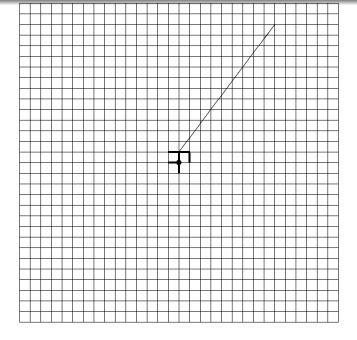


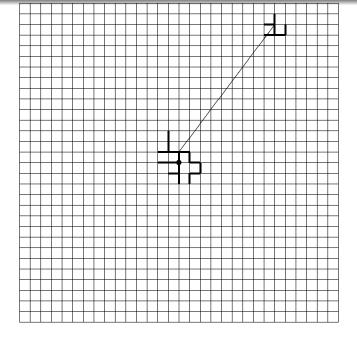


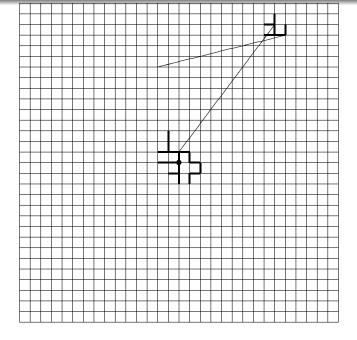


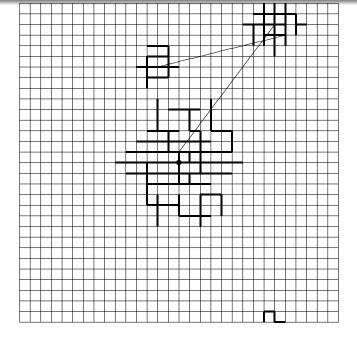


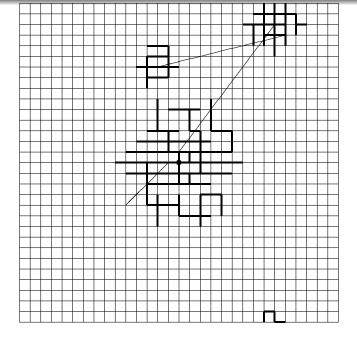


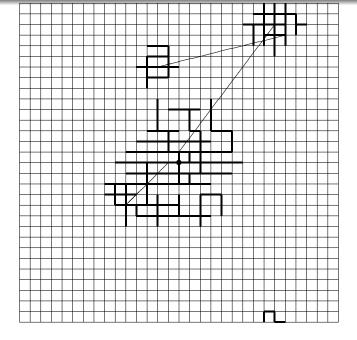












Our model ('balloon process C_t ')

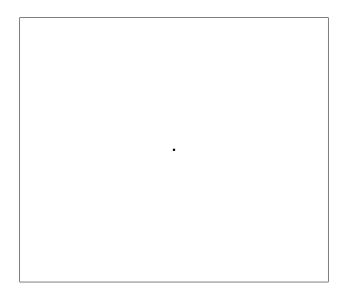
To simplify:

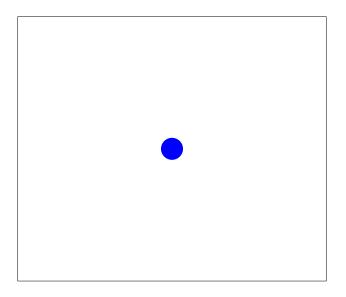
- we remove randomness from nearest neighbor growth
- we formulate on the (real) torus $\Gamma(N) = (\mathbb{R} \mod N)^2$.

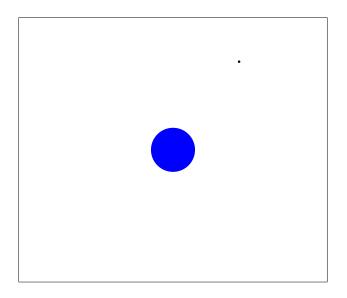
Our model ('balloon process C_t ')

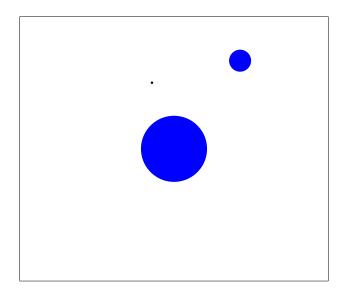
To simplify:

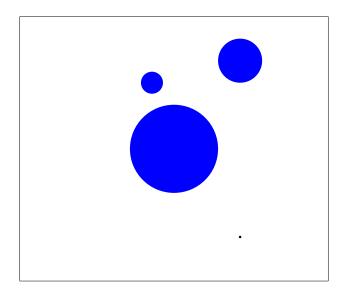
- we remove randomness from nearest neighbor growth
- we formulate on the (real) torus $\Gamma(N) = (\mathbb{R} \mod N)^2$.
- The state of our process at time t is C_t ⊂ Γ(N), the subset informed by time t.
- C_t starts with one *center* chosen uniformly from Γ(N) at time
 0.
- Each *center* is the center of growing disks, whose radius $r(\cdot)$ grows deterministically and linearly. We take $r(s) = s/\sqrt{2\pi}$.
- At time t, birth rate of new centers is $\lambda_N |C_t| = \lambda_N C_t$.
- The location of each new *center* is chosen uniformly from the torus.
- If the new *center* lands at $x \in C_t$, it has no effect. But we count all *centers* in \tilde{X}_t .

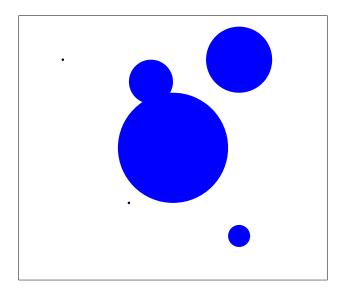




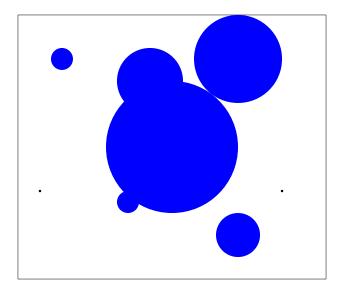


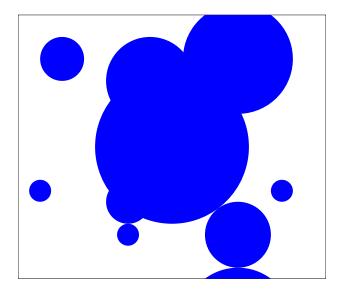




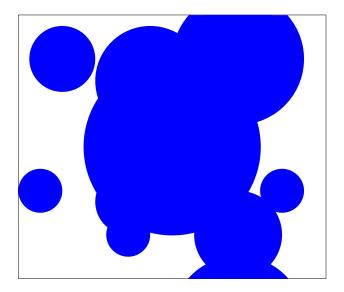


S. Chatterjee Aldous' gossip process





S. Chatterjee Aldous' gossip process



Phase transition

Consider $\lambda_N = N^{-\alpha}$.

- Case 1: $\alpha > 3$.
 - If the diameter of C_t grows linearly, then $\int_0^{c_0 N} C_t dt = O(N^3)$.
 - So w.h.p. no new *center* will be born before the initial disk covers the entire torus, and
 - the cover time satisfies

$$\frac{T_N}{N} \xrightarrow{P} \sqrt{\pi}.$$

Phase transition

Consider $\lambda_N = N^{-\alpha}$.

• Case 1: $\alpha > 3$.

- If the diameter of C_t grows linearly, then $\int_0^{c_0N} C_t dt = O(N^3)$.
- So w.h.p. no new *center* will be born before the initial disk covers the entire torus, and
- the cover time satisfies

$$\frac{T_N}{N} \xrightarrow{P} \sqrt{\pi}.$$

Case 2: α = 3.

- with probabilities bounded away from 0, (i) no new center will be born and $T_N \approx \sqrt{\pi}N$, and (ii) there will be O(1) many landing close enough to (N/2, N/2) to make $T_N \leq (1-\delta)\sqrt{\pi}N$.
- T_N/N converges weekly to a random variable with support $[0, \sqrt{\pi}]$ and an atom at $\sqrt{\pi}$.

Phase transition

Consider $\lambda_N = N^{-\alpha}$.

• Case 1: $\alpha > 3$.

- If the diameter of C_t grows linearly, then $\int_0^{c_0N} C_t dt = O(N^3)$.
- So w.h.p. no new *center* will be born before the initial disk covers the entire torus, and
- the cover time satisfies

$$\frac{T_N}{N} \xrightarrow{P} \sqrt{\pi}.$$

Case 2: α = 3.

- with probabilities bounded away from 0, (i) no new *center* will be born and $T_N \approx \sqrt{\pi}N$, and (ii) there will be O(1) many landing close enough to (N/2, N/2) to make $T_N \leq (1 \delta)\sqrt{\pi}N$.
- T_N/N converges weekly to a random variable with support $[0, \sqrt{\pi}]$ and an atom at $\sqrt{\pi}$.
- Case 3: $\alpha < 3$.
 - Many new *centers* will be born.
 - The cover time is significantly accelerated.

Theorem (C. and Durrett; AoAP 2011)

• For $\alpha < 3$, the cover time T_N satisfies

$$\frac{T_N}{N^{\alpha/3}\log N} \xrightarrow{P} 2 - 2\alpha/3.$$

Theorem (C. and Durrett; AoAP 2011)

• For $\alpha < 3$, the cover time T_N satisfies

$$\frac{T_N}{N^{\alpha/3}\log N} \xrightarrow{P} 2 - 2\alpha/3.$$

• There is a positive random variable M such that if time is shifted by $(2 - 2\alpha/3) \log N - \log M$ and sped up by $N^{\alpha/3}$, then the fraction of covered area is approximately a deterministic distribution function $h(\cdot)$ on $(-\infty, \infty)$.

Theorem (C. and Durrett; AoAP 2011)

• For $\alpha < 3$, the cover time T_N satisfies

$$\frac{T_N}{N^{\alpha/3}\log N} \xrightarrow{P} 2 - 2\alpha/3.$$

- There is a positive random variable M such that if time is shifted by $(2 2\alpha/3) \log N \log M$ and sped up by $N^{\alpha/3}$, then the fraction of covered area is approximately a deterministic distribution function $h(\cdot)$ on $(-\infty, \infty)$.
- More precisely, for $\psi(t) = N^{\alpha/3}[(2 - 2\alpha/3) \log N - \log M] + N^{\alpha/3}t$ and $\delta > 0$,

$$\lim_{N\to\infty} P\left(\sup_{s\leq t} |N^{-2}C_{\psi(s)} - h(s)| \leq \delta\right) = 1$$

Branching balloon process A_t

- Overlaps among the disks in C_t make it difficult to study.
- We begin by studying much simpler balloon branching process *A*_t.

In the process \mathcal{A}_t ,

- we do not ignore any *center* (unlike in C_t),
- X_t denotes the number of centers at time t,
- $A_t = \int_0^t (t-s)^2/2 \ dX_s = \text{total area of all disks born by time } t$,
- new *centers* are born at rate $N^{-\alpha}A_t$ at uniformly chosen locations.

We couple C_t and A_t so that

- they start from the same point, and
- $C_t \subset A_t, C_t \leq A_t, \tilde{X}_t \leq X_t \ \forall t \geq 0$. (Recall $\tilde{X}_t = \#$ centers in C_t)

Properties of A_t

Let $\lambda = N^{-\alpha}$.

- Let $L_t := \int_0^t X_s \, ds$ be the length process. Then $A_t = \int_0^t (t-s)^2 / 2 \, dX_s = \int_0^t L_s \, ds.$
- Using i.i.d. behavior of all the centers,

$$X_t = 1 + \sum_{i:s_i \in \Pi_t} X_{t-s_i}^i,$$

where $\Pi_t \subset [0, t]$ is the set of time points when the initial disk gives birth to new centers, and X^i s are i.i.d. copies of X.

Properties of \mathcal{A}_t

Let $\lambda = N^{-\alpha}$.

- Let $L_t := \int_0^t X_s \, ds$ be the length process. Then $A_t = \int_0^t (t-s)^2/2 \, dX_s = \int_0^t L_s \, ds.$
- Using i.i.d. behavior of all the centers,

$$X_t = 1 + \sum_{i:s_i \in \Pi_t} X_{t-s_i}^i,$$

where $\Pi_t \subset [0, t]$ is the set of time points when the initial disk gives birth to new centers, and X^i s are i.i.d. copies of X.

• A little Poisson process computation shows that

$$EX_t = 1 + \int_0^t EX_{t-s} \lambda \frac{s^2}{2} ds$$
, as area of initial disk at time s is $\frac{s^2}{2}$

• Solving the renewal equation

$$EX_t = \sum_{k=0}^{\infty} \frac{\lambda^k t^{3k}}{(3k)!}.$$

Properties of A_t (continued)

• Solving the ODE $v''' = \lambda v$, $(\omega, \omega^2 \text{ are complex cube roots of } 1)$

$$EX_t = \frac{1}{3} \left[\exp(\lambda^{1/3}t) + \exp(\lambda^{1/3}\omega t) + \exp(\lambda^{1/3}\omega^2 t) \right], \text{ and so}$$
$$EA_t = \frac{\lambda^{-2/3}}{3} \left[\exp(\lambda^{1/3}t) + \omega \exp(\lambda^{1/3}\omega t) + \omega^2 \exp(\lambda^{1/3}\omega^2 t) \right],$$

•
$$(X_t, L_t, A_t)$$
 is a Markov process.
• If $\mathcal{F}_s = \sigma\{X_r, L_r, A_r : r \le s\}$, then

$$\frac{d}{dt} E \begin{bmatrix} X_t \\ L_t \\ A_t \end{bmatrix} \mathcal{F}_s \Big|_{t=s} = Q \begin{bmatrix} X_s \\ L_s \\ A_s \end{bmatrix}, \text{ where } Q = \begin{pmatrix} 0 & 0 & \lambda \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

- The left eigenvalues of Q are $\eta = \lambda^{1/3}, \lambda^{1/3}\omega, \lambda^{1/3}\omega^2$ with eigenvector $(1, \eta, \eta^2)$.
- From Dynkin;s formula, $e^{-\eta t}(X_t + \eta L_t + \eta^2 A_t)$ is a (complex) martingale.

Theorem

$$M_t := \exp(-\lambda^{1/3}t)(X_t + \lambda^{1/3}L_t + \lambda^{2/3}A_t)$$
 is a positive L^2 -martingale, and so

$$M_t \to M \text{ a.s. and in } L^2,$$

②
$$M$$
 does not depend on λ and

3
$$P(M > 0) = 1$$
,

•
$$\tau(\epsilon) = \inf\{t : C_t \ge \epsilon N^2\}$$
. We compare it with
 $\sigma(\epsilon) := \inf\{t : A_t \ge \epsilon N^2\}.$
• $EA_t \sim a(t) = (1/3)N^{2\alpha/3}\exp(N^{-\alpha/3}t)$, and let
 $S(\epsilon) := N^{\alpha/3}[(2-2\alpha/3)\log N + \log(3\epsilon)]$ so that $a(S(\epsilon)) = \epsilon N^2$.

• Using the L^2 convergence we have nice estimates for $P(\sup_{t\geq u} |A_t/a(t) - M| > \gamma)$ which in turn gives:

Lemma

If 0 < ϵ < 1, then as N $\rightarrow \infty$

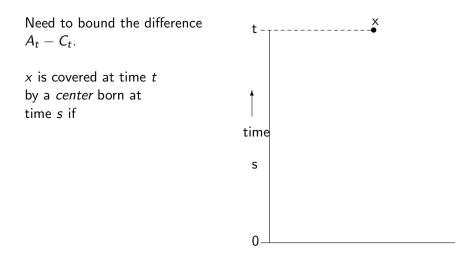
$$N^{-\alpha/3}(\sigma(\epsilon) - S(\epsilon)) \stackrel{P}{\rightarrow} - \log(M).$$

The coupling between C_t and A_t implies $\tau(\epsilon) \geq \sigma(\epsilon)$.

Cone argument for upper bound for $\tau(\epsilon)$

Need to bound the difference $A_t - C_t$.

Cone argument for upper bound for $\tau(\epsilon)$



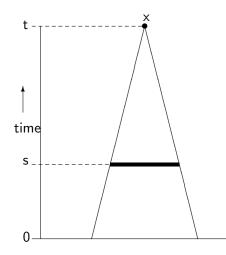
vertices of the graph

Cone argument for upper bound for $\tau(\epsilon)$

Need to bound the difference $A_t - C_t$.

x is covered at time t by a *center* born at time s if

the *center* lies in the corresponding cross section of the space-time cone $K_{x,t} := \{(y,s) \in \Gamma(N) \times [0,t] : |y-x| \le (t-s)/\sqrt{2\pi}\}.$



vertices of the graph

So
$$P(x \notin C_t | s_0, s_1, s_2, \ldots) = \prod_{i:s_i \leq t} \left[1 - \frac{(t-s_i)^2}{2N^2} \right]$$

$$\leq \exp \left[-\sum_{i:s_i \leq t} \frac{(t-s_i)^2}{2N^2} \right]$$

.

So
$$P(x \notin C_t | s_0, s_1, s_2, \ldots) = \prod_{i:s_i \leq t} \left[1 - \frac{(t-s_i)^2}{2N^2} \right]$$

$$\leq \exp \left[-\sum_{i:s_i \leq t} \frac{(t-s_i)^2}{2N^2} \right]$$

.

This together with the inequality $1 - e^{-x} \ge x - x^2/2$ gives

$$\begin{split} \mathsf{E}\mathsf{C}_t &\geq \mathsf{N}^2\mathsf{E}\left[1-\exp\left(-\int_0^t \frac{(t-s)^2}{2\mathsf{N}^2}\,d\tilde{X}_s\right)\right] \\ &\geq \frac{t^2}{2}+\int_0^t \frac{(t-s)^2}{2}\lambda\mathsf{E}\mathsf{C}_s\mathsf{d}s-\frac{\mathsf{E}\mathsf{A}_t^2}{2\mathsf{N}^2}. \end{split}$$

So
$$P(x \notin C_t | s_0, s_1, s_2, \ldots) = \prod_{i:s_i \leq t} \left[1 - \frac{(t-s_i)^2}{2N^2} \right]$$

$$\leq \exp \left[-\sum_{i:s_i \leq t} \frac{(t-s_i)^2}{2N^2} \right]$$

.

This together with the inequality $1 - e^{-x} \ge x - x^2/2$ gives

$$\begin{split} \mathsf{E}\mathsf{C}_t &\geq \mathsf{N}^2\mathsf{E}\left[1 - \exp\left(-\int_0^t \frac{(t-s)^2}{2\mathsf{N}^2} d\tilde{X}_s\right)\right] \\ &\geq \frac{t^2}{2} + \int_0^t \frac{(t-s)^2}{2} \lambda \mathsf{E}\mathsf{C}_s ds - \frac{\mathsf{E}\mathsf{A}_t^2}{2\mathsf{N}^2}. \\ \mathsf{Also} \ \mathsf{E}\mathsf{A}_t &= \frac{t^2}{2} + \int_0^t \frac{(t-s)^2}{2} \lambda \mathsf{E}\mathsf{A}_s \ ds. \end{split}$$

So
$$P(x \notin C_t | s_0, s_1, s_2, \ldots) = \prod_{i:s_i \leq t} \left[1 - \frac{(t-s_i)^2}{2N^2} \right]$$

$$\leq \exp \left[-\sum_{i:s_i \leq t} \frac{(t-s_i)^2}{2N^2} \right]$$

This together with the inequality $1 - e^{-x} \ge x - x^2/2$ gives

$$\begin{split} \mathsf{E}\mathsf{C}_t &\geq \mathsf{N}^2\mathsf{E}\left[1 - \exp\left(-\int_0^t \frac{(t-s)^2}{2\mathsf{N}^2} \, d\tilde{X}_s\right)\right] \\ &\geq \frac{t^2}{2} + \int_0^t \frac{(t-s)^2}{2} \lambda \mathsf{E}\mathsf{C}_s ds - \frac{\mathsf{E}\mathsf{A}_t^2}{2\mathsf{N}^2}. \end{split}$$

Also $\mathsf{E}\mathsf{A}_t &= \frac{t^2}{2} + \int_0^t \frac{(t-s)^2}{2} \lambda \mathsf{E}\mathsf{A}_s \, ds. \end{split}$

So $EA_t - EC_t$ satisfies a renewal inequality.

• From the last argument

$$\mathit{EC}_t \geq \mathit{EA}_t - \mathit{C} rac{\mathit{a}^2(t)}{\mathit{N}^2}.(ext{ recall } \mathit{EA}_t \sim \mathit{a}(t))$$

• Using Markov inequality we can bound $A_t - C_t$, and have

Lemma

For any $\gamma > 0$, $\limsup_{N \to \infty} P[\tau(\epsilon) > \sigma((1+\gamma)\epsilon)] \le P\left(M \le (1+\gamma)\epsilon^{1/3}\right) + C\frac{\epsilon^{1/3}}{\gamma}.$

Remark: So $\tau(\epsilon) \sim (2 - 2\alpha/3)N^{\alpha/3} \log N$.

How does C_t/N^2 grow?

• Choose $\psi(t) := N^{\alpha/3}[(2-2lpha/3)\log N - \log(M) + t]$ so that

$$N^{-2}A_{\psi(t)} \xrightarrow{P} e^t/3, -\infty < t < \infty.$$

In particular for $W = \psi(\log(3\epsilon)), \ N^{-2}A_W \xrightarrow{P} \epsilon$.

• If ϵ is small, then the bound on $A_t - C_t$ suggests $C_W \approx (\epsilon - O(\epsilon^2))N^2$ w. h. p.

To study the growth of C_t after time W,

- call the *centers* present at time W 'generation 0 centers'.
- For k ≥ 1, generation k centers are those which are born from area covered by generation (k − 1) centers.
- **Def:** For $k \ge 0$ let $C_{W,\psi(t)}^k$ (resp $A_{W,\psi(t)}^k$) be the area covered in C_t (resp A_t) by *centers* of generations $j \in \{0, 1, ..., k\}$.

Estimates for area covered by generation 0 centers

 $A^0_{W,\psi(t)}$ can be expressed in terms of X_W, L_W and A_W , and using their limiting behavior if

$$egin{aligned} g_0(t) &:= \epsilon [1 + (t - \log(3\epsilon)) + (t - \log(3\epsilon))^2/2], ext{ then} \ N^{-2} A^0_{W,\psi(s)} & \stackrel{P}{ o} g_0(s) & ext{uniformly for } s \in [\log(3\epsilon), t]. \end{aligned}$$

Using another cone argument we bound $EA_{s,t}^0 - EC_{s,t}^0$, which shows that if $\eta > 0$ is small, then

w.h.p.
$$N^{-2}\left(C^0_{W,\psi(s)}-A^0_{W,\psi(s)}\right) \geq -\epsilon^{1+\eta} \quad \forall s \in [\log(3\epsilon), t].$$

So for small ϵ , $g_0(t)$ and $f_0(t) := g_0(t) - \epsilon^{1+\eta}$ provide upper and lower bounds respectively for $N^{-2}C^0_{W,\psi(t)}$ w.h.p.

A point $x \notin C^1_{W,\psi(t)}$, if $x \notin C^0_{W,\psi(t)}$ and no generation 1 *center* is born in the space-time cone

$$\mathcal{K}_{x,t}^{\epsilon} \equiv \left\{ (y,s) \in \Gamma(N) \times [W,\psi(t)] : |y-x| \leq (\psi(t)-s)/\sqrt{2\pi} \right\}.$$

Comparing with an appropriate Poisson process,

w.h.p.
$$N^{-2}C^1_{W,\psi(s)} \ge f_1(s) - \delta \quad \forall \ s \in [\log(3\epsilon), t]$$

for any $\delta > 0$ and small ϵ , where

$$1 - f_1(t) = (1 - f_0(t)) \exp\left(-\int_{\log(3\epsilon)}^t \frac{(t-s)^2}{2} f_0(s) \ ds\right).$$

Lower bound for $C_{\psi(t)}$

The last argument can be iterated. $\{f_k(\cdot)\}$ satisfying

$$1 - f_{k+1}(t) = (1 - f_k(t)) \exp\left(-\int_{\log(3\epsilon)}^t \frac{(t-s)^2}{2} (f_k(s) - f_{k-1}(s)) \, ds\right)$$

provides a lower bound for $C_{W,\psi(\cdot)}^k$.

 $f_k \uparrow f_\epsilon$ uniformly, where f_ϵ satisfies

$$f_{\epsilon}(t) = 1 - (1 - f_0(t)) \exp\left(-\int_{\log(3\epsilon)}^{t} \frac{(t-s)^2}{2} f_{\epsilon}(s) \, ds\right)$$

with $f_{\epsilon}(\log(3\epsilon)) = \epsilon - \epsilon^{1+\eta}$. Choosing k large and ϵ small, for any $\delta > 0$,

w.h.p.
$$N^{-2}C_{\psi(s)} \ge f_{\epsilon}(s)) - \delta \quad \forall \ s \in [\log(3\epsilon), t]$$

Recall that $g_0(\cdot) = \epsilon [1 + (\cdot - \log(3\epsilon)) + (\cdot - \log(3\epsilon))^2/2]$ is an upper bound of $C^0_{W,\psi(t)}$. Following the argument for lower bound and noting that $C^k_{W,\psi(t)} \uparrow C_{\psi(t)}$ uniformly in k, if

$$g_{\epsilon}(t) = 1 - (1 - g_0(t)) \exp\left(-\int_{\log(3\epsilon)}^t \frac{(t-s)^2}{2} g_{\epsilon}(s) \, ds\right), \text{ then}$$

w.h.p. $N^{-2}C_{\psi(s)} \leq g_{\epsilon}(s) + \delta \ \forall \ s \in [\log(3\epsilon), t].$

 $g_{\epsilon}(t)$ and $f_{\epsilon}(t)$ provide upper and lower bounds for $C_{\psi(t)}$. In the limit as $\epsilon \to 0$ both the bounds converge to the same thing. Let $h_{\epsilon}(t) = e^t/3$ for $t < \log(3\epsilon)$.

$$h_{\epsilon}(t) = 1 - \exp\left(-\int_{-\infty}^{\log(3\epsilon)} \frac{(t-s)^2}{2} \frac{e^s}{3} \, ds - \int_{\log(3\epsilon)}^t \frac{(t-s)^2}{2} h_{\epsilon}(s) \, ds\right)$$

for $t \geq \log(3\epsilon)$. Then as $\epsilon \to 0$,

 $f_\epsilon(s) - h_\epsilon(s)$ and $g_\epsilon(s) - h_\epsilon(s) o 0$ uniformly in $s \in [\log(3\epsilon), t]$, and

 $h_{\epsilon}(t) \rightarrow h(t)$ satisfying (a) $\lim_{t \rightarrow -\infty} h(t) = 0$ (b) $\lim_{t \rightarrow \infty} h(t) = 1$ (c) h is increasing with 0 < h(t) < 1 and

(d)
$$h(t) = 1 - \exp\left(-\int_{-\infty}^{t} \frac{(t-s)^2}{2}h(s)\,ds\right).$$

The upper and lower bounds for $C_{\psi(\cdot)}$ can be combined to have

$$\lim_{N o \infty} P\left(\sup_{s \leq t} |N^{-2} C_{\psi(s)} - h(s)| \leq \delta
ight) = 1$$

for any $t < \infty$ and $\delta > 0$

Remarks:

- The displacement of $\tau(\epsilon)$ from $(2 2\alpha/3)N^{\alpha/3} \log N$ on the scale $N^{\alpha/3}$ is dictated by the random variable M that gives the rate of growth of the balloon branching process.
- Once C_t reaches ϵN^2 , the growth is deterministic.
- There is a cutoff phenomenon as the fraction of covered area reaches a small level in time $O(N^{\alpha/3} \log N)$ and then onwards it increases to 1 within time $O(N^{\alpha/3})$.

The cover time T_N

- h(t) never reaches 1.
- Since $N^{-2}C_{\psi(s)} \sim h(s)$, the number of *centers* in $C_{\psi(0)}$ dominates a Poisson random variable with mean

$$\lambda(\delta)N^{2-2lpha/3}, ext{ where } \lambda(\delta) = \int_{-\infty}^{0} (h(s) - \delta)^{+} ds,$$

which are uniformly distributed in the torus.

- If $\delta > 0$ is small, then $\lambda(\delta) > 0$.
- Divide the torus into smaller squares with side $\kappa N^{\alpha/3} \sqrt{\log N}$.
- With high probability each of the small squares owns at least one *center* at time ψ(0).
- This makes $T_N \leq \psi(0) + O(N^{\alpha/3}\sqrt{\log N})$, and so

$$T_N/N^{\alpha/3}\log N \rightarrow 2-2\alpha/3.$$

Thank You