Asymptotic behavior of Aldous' gossip process

Shirshendu Chatterjee

Courant Institute of Mathematical Sciences, New York University

Joint work with Rick Durrett

Conference on Limit Theorems in Probability, IISC

- Consider the d-dimensional square lattice \mathbb{Z}^{d} where each edge has an i.i.d. nonnegative weight from a fixed distribution F.

- Consider the d-dimensional square lattice \mathbb{Z}^{d} where each edge has an i.i.d. nonnegative weight from a fixed distribution F.
- For a path \mathcal{P}, the passage time for \mathcal{P} is defined as the sum of weights over all the edges in \mathcal{P}.

- Consider the d-dimensional square lattice \mathbb{Z}^{d} where each edge has an i.i.d. nonnegative weight from a fixed distribution F.
- For a path \mathcal{P}, the passage time for \mathcal{P} is defined as the sum of weights over all the edges in \mathcal{P}.
- For $\mathbf{x}, \mathbf{y} \in \mathbb{Z}^{d}$, the first-passage time $a(\mathbf{x}, \mathbf{y})$ is defined as the minimum passage time over all paths from \mathbf{x} to \mathbf{y}.

Mean behavior

- The model was introduced by Hammersley and Welsh in 1965, where they proved that for all $\mathbf{x} \in \mathbb{Z}^{d}$

$$
\nu(\mathbf{x})=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}(a(\mathbf{0}, n \mathbf{x}))
$$

exists and is finite when the edge weights have finite mean.

Mean behavior

- The model was introduced by Hammersley and Welsh in 1965, where they proved that for all $\mathbf{x} \in \mathbb{Z}^{d}$

$$
\nu(\mathbf{x})=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}(a(\mathbf{0}, n \mathbf{x}))
$$

exists and is finite when the edge weights have finite mean.

- Kesten('86) proved that, $\nu(\mathbf{x})>0$ iff $F(0)<p_{c}(d)$ where $p_{c}(d)$ is the critical probability for bond percolation in \mathbb{Z}^{d}.

Mean behavior

- The model was introduced by Hammersley and Welsh in 1965, where they proved that for all $\mathbf{x} \in \mathbb{Z}^{d}$

$$
\nu(\mathbf{x})=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}(a(\mathbf{0}, n \mathbf{x}))
$$

exists and is finite when the edge weights have finite mean.

- Kesten('86) proved that, $\nu(\mathbf{x})>0$ iff $F(0)<p_{c}(d)$ where $p_{c}(d)$ is the critical probability for bond percolation in \mathbb{Z}^{d}.
- The shape theorem by Cox and Durrett('81) says that

$$
\frac{1}{t}\left\{\mathbf{x} \in \mathbb{Z}^{d}: a(\mathbf{0}, \mathbf{x}) \leq t\right\} \oplus\left[-\frac{1}{2}, \frac{1}{2}\right]^{d} \xrightarrow{t \rightarrow \infty} B
$$

where $B=\{\mathbf{x}: \nu(\mathbf{x}) \leq 1\}$ is a convex subset in \mathbb{R}^{d}.

Shape Theorem

Figure: Limiting shape for $\left\{\mathbf{x} \in \mathbb{Z}^{d}: a(\mathbf{0}, \mathbf{x}) \leq t\right\}$.

First passage percolation on a torus

- Space is $\Lambda(N)=(\mathbb{Z} \bmod N)^{2}$.
- Suppose one agent is present at each vertex of $\Lambda(N)$.
- At time 0 the center receives an information.
- Each neighbor of the center gets the information independently at a constant rate λ.
- In general, whenever a vertex is informed, each of its uninformed neighbor gets the information independently at rate λ.
- ξ_{t} is the set of vertices informed by time $t . \xi_{0}=\{(0,0)\}$.

First passage percolation on a torus

- Space is $\Lambda(N)=(\mathbb{Z} \bmod N)^{2}$.
- Suppose one agent is present at each vertex of $\Lambda(N)$.
- At time 0 the center receives an information.
- Each neighbor of the center gets the information independently at a constant rate λ.
- In general, whenever a vertex is informed, each of its uninformed neighbor gets the information independently at rate λ.
- ξ_{t} is the set of vertices informed by time $t . \xi_{0}=\{(0,0)\}$.

Questions:

- How does ξ_{t} grow?
- When $\xi_{t}=\Lambda(N)$?

If T_{N} is the time when every agent on the torus is informed, then T_{N} / N converges to a number.

Short-long FPP on $\Lambda(N)$ (Aldous '07)

- State of the process is $\xi_{t} \subset \Lambda(N)$, the set of informed vertices at time $t . \xi_{0}=\{(0,0)\}$.
- Information spreads from vertex i to j at rate $\nu_{i j}$, where

$$
\nu_{i j}= \begin{cases}1 / 4 & \text { if } j \text { is a (nearest) neighbor of } i \\ \lambda_{N} /\left(N^{2}-5\right) & \text { if not. }\end{cases}
$$

- If a vertex gets the information from a non-neighbor, we call it a new 'center' for information spreading.
- So each informed vertex tries to spread the information locally at rate 1 and give birth to new centers at rate λ_{N}.

Short-long FPP on $\Lambda(N)$ (Aldous '07)

- State of the process is $\xi_{t} \subset \Lambda(N)$, the set of informed vertices at time t. $\xi_{0}=\{(0,0)\}$.
- Information spreads from vertex i to j at rate $\nu_{i j}$, where

$$
\nu_{i j}= \begin{cases}1 / 4 & \text { if } j \text { is a (nearest) neighbor of } i \\ \lambda_{N} /\left(N^{2}-5\right) & \text { if not. }\end{cases}
$$

- If a vertex gets the information from a non-neighbor, we call it a new 'center' for information spreading.
- So each informed vertex tries to spread the information locally at rate 1 and give birth to new centers at rate λ_{N}.

Question: How does ξ_{t} grow?
How does T_{N} (cover time of the torus) scale?

					\cdot				
H									

					\bullet				
H									

					\bullet				
H									

				\ddots					
H									

				\ddots					
H									

				\ddots					

										T

									T
					f				

								2	
					3				
					,				

								λ	

$$
\frac{3}{4+1}
$$

$$
\frac{1+4}{4+1}
$$

$$
\frac{1+}{1+1}
$$

Our model ('balloon process $\mathcal{C}_{t}{ }^{\prime}$)

To simplify:

- we remove randomness from nearest neighbor growth
- we formulate on the $($ real $)$ torus $\Gamma(N)=(\mathbb{R} \bmod N)^{2}$.

Our model ('balloon process \mathcal{C}_{t} ')

To simplify:

- we remove randomness from nearest neighbor growth
- we formulate on the $($ real $)$ torus $\Gamma(N)=(\mathbb{R} \bmod N)^{2}$.
- The state of our process at time t is $\mathcal{C}_{t} \subset \Gamma(N)$, the subset informed by time t.
- \mathcal{C}_{t} starts with one center chosen uniformly from $\Gamma(N)$ at time 0.
- Each center is the center of growing disks, whose radius $r(\cdot)$ grows deterministically and linearly. We take $r(s)=s / \sqrt{2 \pi}$.
- At time t, birth rate of new centers is $\lambda_{N}\left|\mathcal{C}_{t}\right|=\lambda_{N} C_{t}$.
- The location of each new center is chosen uniformly from the torus.
- If the new center lands at $x \in \mathcal{C}_{t}$, it has no effect. But we count all centers in \tilde{X}_{t}.

Phase transition

Consider $\lambda_{N}=N^{-\alpha}$.

- Case 1: $\alpha>3$.
- If the diameter of \mathcal{C}_{t} grows linearly, then $\int_{0}^{c_{0} N} C_{t} d t=O\left(N^{3}\right)$.
- So w.h.p. no new center will be born before the initial disk covers the entire torus, and
- the cover time satisfies

$$
\frac{T_{N}}{N} \xrightarrow{P} \sqrt{\pi} .
$$

Consider $\lambda_{N}=N^{-\alpha}$.

- Case 1: $\alpha>3$.
- If the diameter of \mathcal{C}_{t} grows linearly, then $\int_{0}^{c_{0} N} C_{t} d t=O\left(N^{3}\right)$.
- So w.h.p. no new center will be born before the initial disk covers the entire torus, and
- the cover time satisfies

$$
\frac{T_{N}}{N} \xrightarrow{P} \sqrt{\pi} .
$$

- Case 2: $\alpha=3$.
- with probabilities bounded away from 0 , (i) no new center will be born and $T_{N} \approx \sqrt{\pi} N$, and (ii) there will be $\mathrm{O}(1)$ many landing close enough to ($N / 2, N / 2$) to make $T_{N} \leq(1-\delta) \sqrt{\pi} N$.
- T_{N} / N converges weekly to a random variable with support $[0, \sqrt{\pi}]$ and an atom at $\sqrt{\pi}$.

Consider $\lambda_{N}=N^{-\alpha}$.

- Case 1: $\alpha>3$.
- If the diameter of \mathcal{C}_{t} grows linearly, then $\int_{0}^{c_{0} N} C_{t} d t=O\left(N^{3}\right)$.
- So w.h.p. no new center will be born before the initial disk covers the entire torus, and
- the cover time satisfies

$$
\frac{T_{N}}{N} \xrightarrow{P} \sqrt{\pi} .
$$

- Case 2: $\alpha=3$.
- with probabilities bounded away from 0 , (i) no new center will be born and $T_{N} \approx \sqrt{\pi} N$, and (ii) there will be $\mathrm{O}(1)$ many landing close enough to ($N / 2, N / 2$) to make $T_{N} \leq(1-\delta) \sqrt{\pi} N$.
- T_{N} / N converges weekly to a random variable with support [$0, \sqrt{\pi}$] and an atom at $\sqrt{\pi}$.
- Case 3: $\alpha<3$.
- Many new centers will be born.
- The cover time is significantly accelerated.

Asymptotic behavior in ' $\alpha<3$ ' case

Theorem (C. and Durrett; AoAP 2011)

- For $\alpha<3$, the cover time T_{N} satisfies

$$
\frac{T_{N}}{N^{\alpha / 3} \log N} \xrightarrow{P} 2-2 \alpha / 3 .
$$

Asymptotic behavior in ' $\alpha<3$ ' case

Theorem (C. and Durrett; AoAP 2011)

- For $\alpha<3$, the cover time T_{N} satisfies

$$
\frac{T_{N}}{N^{\alpha / 3} \log N} \xrightarrow{P} 2-2 \alpha / 3 .
$$

- There is a positive random variable M such that if time is shifted by $(2-2 \alpha / 3) \log N-\log M$ and sped up by $N^{\alpha / 3}$, then the fraction of covered area is approximately a deterministic distribution function $h(\cdot)$ on $(-\infty, \infty)$.

Asymptotic behavior in ' $\alpha<3$ ' case

Theorem (C. and Durrett; AoAP 2011)

- For $\alpha<3$, the cover time T_{N} satisfies

$$
\frac{T_{N}}{N^{\alpha / 3} \log N} \stackrel{P}{\rightarrow} 2-2 \alpha / 3 .
$$

- There is a positive random variable M such that if time is shifted by $(2-2 \alpha / 3) \log N-\log M$ and sped up by $N^{\alpha / 3}$, then the fraction of covered area is approximately a deterministic distribution function $h(\cdot)$ on $(-\infty, \infty)$.
- More precisely, for

$$
\begin{gathered}
\psi(t)=N^{\alpha / 3}[(2-2 \alpha / 3) \log N-\log M]+N^{\alpha / 3} t \text { and } \delta>0, \\
\lim _{N \rightarrow \infty} P\left(\sup _{s \leq t}\left|N^{-2} C_{\psi(s)}-h(s)\right| \leq \delta\right)=1 .
\end{gathered}
$$

Branching balloon process \mathcal{A}_{t}

- Overlaps among the disks in \mathcal{C}_{t} make it difficult to study.
- We begin by studying much simpler balloon branching process \mathcal{A}_{t}.

In the process \mathcal{A}_{t},

- we do not ignore any center (unlike in \mathcal{C}_{t}),
- X_{t} denotes the number of centers at time t,
- $A_{t}=\int_{0}^{t}(t-s)^{2} / 2 d X_{s}=$ total area of all disks born by time t,
- new centers are born at rate $N^{-\alpha} A_{t}$ at uniformly chosen locations.
We couple \mathcal{C}_{t} and \mathcal{A}_{t} so that
- they start from the same point, and
- $\mathcal{C}_{t} \subset \mathcal{A}_{t}, C_{t} \leq A_{t}, \tilde{X}_{t} \leq X_{t} \forall t \geq 0$. (Recall $\tilde{X}_{t}=\#$ centers in \mathcal{C}_{t})

Properties of \mathcal{A}_{t}

Let $\lambda=N^{-\alpha}$.

- Let $L_{t}:=\int_{0}^{t} X_{s} d s$ be the length process. Then $A_{t}=\int_{0}^{t}(t-s)^{2} / 2 d X_{s}=\int_{0}^{t} L_{s} d s$.
- Using i.i.d. behavior of all the centers,

$$
X_{t}=1+\sum_{i: s_{i} \in \Pi_{t}} X_{t-s_{i}}^{i}
$$

where $\Pi_{t} \subset[0, t]$ is the set of time points when the initial disk gives birth to new centers, and X^{i} s are i.i.d. copies of X.

Let $\lambda=N^{-\alpha}$.

- Let $L_{t}:=\int_{0}^{t} X_{s} d s$ be the length process. Then $A_{t}=\int_{0}^{t}(t-s)^{2} / 2 d X_{s}=\int_{0}^{t} L_{s} d s$.
- Using i.i.d. behavior of all the centers,

$$
X_{t}=1+\sum_{i: s_{i} \in \Pi_{t}} X_{t-s_{i}}^{i}
$$

where $\Pi_{t} \subset[0, t]$ is the set of time points when the initial disk gives birth to new centers, and X^{i} s are i.i.d. copies of X.

- A little Poisson process computation shows that
$E X_{t}=1+\int_{0}^{t} E X_{t-s} \lambda \frac{s^{2}}{2} d s$, as area of initial disk at time s is $\frac{s^{2}}{2}$.
- Solving the renewal equation

$$
E X_{t}=\sum_{k=0}^{\infty} \frac{\lambda^{k} t^{3 k}}{(3 k)!}
$$

- Solving the ODE $v^{\prime \prime \prime}=\lambda v,\left(\omega, \omega^{2}\right.$ are complex cube roots of 1)

$$
\begin{aligned}
& E X_{t}=\frac{1}{3}\left[\exp \left(\lambda^{1 / 3} t\right)+\exp \left(\lambda^{1 / 3} \omega t\right)+\exp \left(\lambda^{1 / 3} \omega^{2} t\right)\right], \text { and so } \\
& E A_{t}=\frac{\lambda^{-2 / 3}}{3}\left[\exp \left(\lambda^{1 / 3} t\right)+\omega \exp \left(\lambda^{1 / 3} \omega t\right)+\omega^{2} \exp \left(\lambda^{1 / 3} \omega^{2} t\right)\right]
\end{aligned}
$$

- $\left(X_{t}, L_{t}, A_{t}\right)$ is a Markov process.
- If $\mathcal{F}_{s}=\sigma\left\{X_{r}, L_{r}, A_{r}: r \leq s\right\}$, then

$$
\frac{d}{d t} E\left[\begin{array}{c}
X_{t} \\
L_{t} \\
A_{t}
\end{array}\left|\mathcal{F}_{s}\right|_{t=s}=Q\left[\begin{array}{c}
X_{s} \\
L_{s} \\
A_{s}
\end{array}\right], \text { where } Q=\left(\begin{array}{ccc}
0 & 0 & \lambda \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\right.
$$

- The left eigenvalues of Q are $\eta=\lambda^{1 / 3}, \lambda^{1 / 3} \omega, \lambda^{1 / 3} \omega^{2}$ with eigenvector $\left(1, \eta, \eta^{2}\right)$.
- From Dynkin;s formula, $e^{-\eta t}\left(X_{t}+\eta L_{t}+\eta^{2} A_{t}\right)$ is a (complex) martingale.

The random variable M

Theorem

$M_{t}:=\exp \left(-\lambda^{1 / 3} t\right)\left(X_{t}+\lambda^{1 / 3} L_{t}+\lambda^{2 / 3} A_{t}\right)$ is a positive
L^{2}-martingale, and so
(1) $M_{t} \rightarrow M$ a.s. and in L^{2},
(2) M does not depend on λ and
(3) $P(M>0)=1$,
(9) $X_{t} / E X_{t}, L_{t} / E L_{t}, A_{t} / E A_{t} \rightarrow M$ a.s. and in L^{2}.

Hitting time

- $\tau(\epsilon)=\inf \left\{t: C_{t} \geq \epsilon N^{2}\right\}$. We compare it with

$$
\sigma(\epsilon):=\inf \left\{t: A_{t} \geq \epsilon N^{2}\right\}
$$

- $E A_{t} \sim a(t)=(1 / 3) N^{2 \alpha / 3} \exp \left(N^{-\alpha / 3} t\right)$, and let

$$
S(\epsilon):=N^{\alpha / 3}[(2-2 \alpha / 3) \log N+\log (3 \epsilon)] \text { so that } a(S(\epsilon))=\epsilon N^{2} .
$$

- Using the L^{2} convergence we have nice estimates for $P\left(\sup _{t \geq u}\left|A_{t} / a(t)-M\right|>\gamma\right)$ which in turn gives:

Lemma

If $0<\epsilon<1$, then as $N \rightarrow \infty$

$$
N^{-\alpha / 3}(\sigma(\epsilon)-S(\epsilon)) \xrightarrow{P}-\log (M)
$$

The coupling between \mathcal{C}_{t} and \mathcal{A}_{t} implies $\tau(\epsilon) \geq \sigma(\epsilon)$.

Cone argument for upper bound for $\tau(\epsilon)$

Need to bound the difference
$A_{t}-C_{t}$.

Cone argument for upper bound for $\tau(\epsilon)$

Need to bound the difference $A_{t}-C_{t}$.
x is covered at time t by a center born at time s if

Cone argument for upper bound for $\tau(\epsilon)$

Need to bound the difference $A_{t}-C_{t}$.
x is covered at time t by a center born at time s if the center lies in the corresponding cross section of the space-time cone

$$
\begin{aligned}
& K_{x, t}:=\{(y, s) \in \Gamma(N) \times[0, t]: \\
& |y-x| \leq(t-s) / \sqrt{2 \pi}\}
\end{aligned}
$$

vertices of the graph

Upper bound for $\tau(\epsilon)$ (continued)

So $\begin{aligned} P\left(x \notin \mathcal{C}_{t} \mid s_{0}, s_{1}, s_{2}, \ldots\right) & =\prod_{i: s \leq \leq t}\left[1-\frac{\left(t-s_{i}\right)^{2}}{2 N^{2}}\right] \\ & \leq \exp \left[-\sum_{i, s_{i} \leq t} \frac{\left(t-s_{i}\right)^{2}}{2 N^{2}}\right] .\end{aligned}$

Upper bound for $\tau(\epsilon)$ (continued)

$$
\text { So } \begin{aligned}
P\left(x \notin \mathcal{C}_{t} \mid s_{0}, s_{1}, s_{2}, \ldots\right) & =\prod_{i: s_{i} \leq t}\left[1-\frac{\left(t-s_{i}\right)^{2}}{2 N^{2}}\right] \\
& \leq \exp \left[-\sum_{i: s_{i} \leq t} \frac{\left(t-s_{i}\right)^{2}}{2 N^{2}}\right] .
\end{aligned}
$$

This together with the inequality $1-e^{-x} \geq x-x^{2} / 2$ gives

$$
\begin{aligned}
E C_{t} & \geq N^{2} E\left[1-\exp \left(-\int_{0}^{t} \frac{(t-s)^{2}}{2 N^{2}} d \tilde{X}_{s}\right)\right] \\
& \geq \frac{t^{2}}{2}+\int_{0}^{t} \frac{(t-s)^{2}}{2} \lambda E C_{s} d s-\frac{E A_{t}^{2}}{2 N^{2}}
\end{aligned}
$$

Upper bound for $\tau(\epsilon)$ (continued)

$$
\text { So } \begin{aligned}
P\left(x \notin \mathcal{C}_{t} \mid s_{0}, s_{1}, s_{2}, \ldots\right) & =\prod_{i: s_{i} \leq t}\left[1-\frac{\left(t-s_{i}\right)^{2}}{2 N^{2}}\right] \\
& \leq \exp \left[-\sum_{i: s_{i} \leq t} \frac{\left(t-s_{i}\right)^{2}}{2 N^{2}}\right] .
\end{aligned}
$$

This together with the inequality $1-e^{-x} \geq x-x^{2} / 2$ gives

$$
\begin{aligned}
E C_{t} & \geq N^{2} E\left[1-\exp \left(-\int_{0}^{t} \frac{(t-s)^{2}}{2 N^{2}} d \tilde{X}_{s}\right)\right] \\
& \geq \frac{t^{2}}{2}+\int_{0}^{t} \frac{(t-s)^{2}}{2} \lambda E C_{s} d s-\frac{E A_{t}^{2}}{2 N^{2}} \\
\text { Also } E A_{t} & =\frac{t^{2}}{2}+\int_{0}^{t} \frac{(t-s)^{2}}{2} \lambda E A_{s} d s .
\end{aligned}
$$

Upper bound for $\tau(\epsilon)$ (continued)

$$
\text { So } \begin{aligned}
P\left(x \notin \mathcal{C}_{t} \mid s_{0}, s_{1}, s_{2}, \ldots\right) & =\prod_{i: s_{i} \leq t}\left[1-\frac{\left(t-s_{i}\right)^{2}}{2 N^{2}}\right] \\
& \leq \exp \left[-\sum_{i: s_{i} \leq t} \frac{\left(t-s_{i}\right)^{2}}{2 N^{2}}\right]
\end{aligned}
$$

This together with the inequality $1-e^{-x} \geq x-x^{2} / 2$ gives

$$
\begin{aligned}
E C_{t} & \geq N^{2} E\left[1-\exp \left(-\int_{0}^{t} \frac{(t-s)^{2}}{2 N^{2}} d \tilde{X}_{s}\right)\right] \\
& \geq \frac{t^{2}}{2}+\int_{0}^{t} \frac{(t-s)^{2}}{2} \lambda E C_{s} d s-\frac{E A_{t}^{2}}{2 N^{2}} \\
\text { Also } E A_{t} & =\frac{t^{2}}{2}+\int_{0}^{t} \frac{(t-s)^{2}}{2} \lambda E A_{s} d s
\end{aligned}
$$

So $E A_{t}-E C_{t}$ satisfies a renewal inequality.

Upper bound for $\tau(\epsilon)$ (continued)

- From the last argument

$$
E C_{t} \geq E A_{t}-C \frac{a^{2}(t)}{N^{2}} \cdot\left(\text { recall } E A_{t} \sim a(t)\right)
$$

- Using Markov inequality we can bound $A_{t}-C_{t}$, and have

Lemma

For any $\gamma>0$,
$\lim \sup _{N \rightarrow \infty} P[\tau(\epsilon)>\sigma((1+\gamma) \epsilon)] \leq P\left(M \leq(1+\gamma) \epsilon^{1 / 3}\right)+C \frac{\epsilon^{1 / 3}}{\gamma}$.
Remark: So $\tau(\epsilon) \sim(2-2 \alpha / 3) N^{\alpha / 3} \log N$.

How does C_{t} / N^{2} grow?

- Choose $\psi(t):=N^{\alpha / 3}[(2-2 \alpha / 3) \log N-\log (M)+t]$ so that

$$
N^{-2} A_{\psi(t)} \xrightarrow{P} e^{t} / 3,-\infty<t<\infty
$$

In particular for $W=\psi(\log (3 \epsilon)), N^{-2} A_{W} \xrightarrow{P} \epsilon$.

- If ϵ is small, then the bound on $A_{t}-C_{t}$ suggests
$C_{W} \approx\left(\epsilon-O\left(\epsilon^{2}\right)\right) N^{2}$ w. h. p.
To study the growth of \mathcal{C}_{t} after time W,
- call the centers present at time W 'generation 0 centers'.
- For $k \geq 1$, generation k centers are those which are born from area covered by generation $(k-1)$ centers.
Def: For $k \geq 0$ let $C_{W, \psi(t)}^{k}\left(\operatorname{resp} A_{W, \psi(t)}^{k}\right)$ be the area covered in \mathcal{C}_{t} (resp \mathcal{A}_{t}) by centers of generations $j \in\{0,1, \ldots, k\}$.

Estimates for area covered by generation 0 centers

$A_{W, \psi(t)}^{0}$ can be expressed in terms of X_{W}, L_{W} and A_{W}, and using their limiting behavior if

$$
\begin{aligned}
& g_{0}(t):=\epsilon\left[1+(t-\log (3 \epsilon))+(t-\log (3 \epsilon))^{2} / 2\right], \text { then } \\
& \quad N^{-2} A_{W, \psi(s)}^{0} \xrightarrow{P} g_{0}(s) \quad \text { uniformly for } s \in[\log (3 \epsilon), t] .
\end{aligned}
$$

Using another cone argument we bound $E A_{s, t}^{0}-E C_{s, t}^{0}$, which shows that if $\eta>0$ is small, then

$$
\text { w.h.p. } N^{-2}\left(C_{W, \psi(s)}^{0}-A_{W, \psi(s)}^{0}\right) \geq-\epsilon^{1+\eta} \forall s \in[\log (3 \epsilon), t] \text {. }
$$

So for small $\epsilon, g_{0}(t)$ and $f_{0}(t):=g_{0}(t)-\epsilon^{1+\eta}$ provide upper and lower bounds respectively for $N^{-2} C_{W, \psi(t)}^{0}$ w.h.p.

Lower bound for $C_{W, \psi(t)}^{1}$

A point $x \notin \mathcal{C}_{W, \psi(t)}^{1}$, if $x \notin \mathcal{C}_{W, \psi(t)}^{0}$ and no generation 1 center is born in the space-time cone

$$
K_{x, t}^{\epsilon} \equiv\{(y, s) \in \Gamma(N) \times[W, \psi(t)]:|y-x| \leq(\psi(t)-s) / \sqrt{2 \pi}\}
$$

Comparing with an appropriate Poisson process,

$$
\text { w.h.p. } N^{-2} C_{W, \psi(s)}^{1} \geq f_{1}(s)-\delta \forall s \in[\log (3 \epsilon), t]
$$

for any $\delta>0$ and small ϵ, where

$$
1-f_{1}(t)=\left(1-f_{0}(t)\right) \exp \left(-\int_{\log (3 \epsilon)}^{t} \frac{(t-s)^{2}}{2} f_{0}(s) d s\right)
$$

Lower bound for $C_{\psi(t)}$

The last argument can be iterated. $\left\{f_{k}(\cdot)\right\}$ satisfying
$1-f_{k+1}(t)=\left(1-f_{k}(t)\right) \exp \left(-\int_{\log (3 \epsilon)}^{t} \frac{(t-s)^{2}}{2}\left(f_{k}(s)-f_{k-1}(s)\right) d s\right)$
provides a lower bound for $C_{W, \psi(\cdot)}^{k}$.
$f_{k} \uparrow f_{\epsilon}$ uniformly, where f_{ϵ} satisfies

$$
f_{\epsilon}(t)=1-\left(1-f_{0}(t)\right) \exp \left(-\int_{\log (3 \epsilon)}^{t} \frac{(t-s)^{2}}{2} f_{\epsilon}(s) d s\right)
$$

with $f_{\epsilon}(\log (3 \epsilon))=\epsilon-\epsilon^{1+\eta}$. Choosing k large and ϵ small, for any $\delta>0$,

$$
\text { w.h.p. } \left.N^{-2} C_{\psi(s)} \geq f_{\epsilon}(s)\right)-\delta \forall s \in[\log (3 \epsilon), t] \text {. }
$$

Upper bound for $C_{\psi(t)}$

Recall that $g_{0}(\cdot)=\epsilon\left[1+(\cdot-\log (3 \epsilon))+(\cdot-\log (3 \epsilon))^{2} / 2\right]$ is an upper bound of $C_{W, \psi(t)}^{0}$. Following the argument for lower bound and noting that $C_{W, \psi(t)}^{k} \uparrow C_{\psi(t)}$ uniformly in k, if

$$
g_{\epsilon}(t)=1-\left(1-g_{0}(t)\right) \exp \left(-\int_{\log (3 \epsilon)}^{t} \frac{(t-s)^{2}}{2} g_{\epsilon}(s) d s\right) \text {, then }
$$

$$
\text { w.h.p. } N^{-2} C_{\psi(s)} \leq g_{\epsilon}(s)+\delta \forall s \in[\log (3 \epsilon), t]
$$

Limiting behavior of $C_{\psi(t)}$

$g_{\epsilon}(t)$ and $f_{\epsilon}(t)$ provide upper and lower bounds for $C_{\psi(t)}$. In the limit as $\epsilon \rightarrow 0$ both the bounds converge to the same thing.
Let $h_{\epsilon}(t)=e^{t} / 3$ for $t<\log (3 \epsilon)$.
$h_{\epsilon}(t)=1-\exp \left(-\int_{-\infty}^{\log (3 \epsilon)} \frac{(t-s)^{2}}{2} \frac{e^{s}}{3} d s-\int_{\log (3 \epsilon)}^{t} \frac{(t-s)^{2}}{2} h_{\epsilon}(s) d s\right)$
for $t \geq \log (3 \epsilon)$. Then as $\epsilon \rightarrow 0$,
$f_{\epsilon}(s)-h_{\epsilon}(s)$ and $g_{\epsilon}(s)-h_{\epsilon}(s) \rightarrow 0$ uniformly in $s \in[\log (3 \epsilon), t]$, and $h_{\epsilon}(t) \rightarrow h(t)$ satisfying (a) $\lim _{t \rightarrow-\infty} h(t)=0$ (b) $\lim _{t \rightarrow \infty} h(t)=1$
(c) h is increasing with $0<h(t)<1$ and

$$
\text { (d) } \quad h(t)=1-\exp \left(-\int_{-\infty}^{t} \frac{(t-s)^{2}}{2} h(s) d s\right) \text {. }
$$

Limiting behavior of $C_{\psi(t)}$

The upper and lower bounds for $C_{\psi(\cdot)}$ can be combined to have

$$
\lim _{N \rightarrow \infty} P\left(\sup _{s \leq t}\left|N^{-2} C_{\psi(s)}-h(s)\right| \leq \delta\right)=1
$$

for any $t<\infty$ and $\delta>0$

Remarks:

- The displacement of $\tau(\epsilon)$ from $(2-2 \alpha / 3) N^{\alpha / 3} \log N$ on the scale $N^{\alpha / 3}$ is dictated by the random variable M that gives the rate of growth of the balloon branching process.
- Once C_{t} reaches ϵN^{2}, the growth is deterministic.
- There is a cutoff phenomenon as the fraction of covered area reaches a small level in time $O\left(N^{\alpha / 3} \log N\right)$ and then onwards it increases to 1 within time $O\left(N^{\alpha / 3}\right)$.
- $h(t)$ never reaches 1 .
- Since $N^{-2} C_{\psi(s)} \sim h(s)$, the number of centers in $\mathcal{C}_{\psi(0)}$ dominates a Poisson random variable with mean

$$
\lambda(\delta) N^{2-2 \alpha / 3}, \text { where } \lambda(\delta)=\int_{-\infty}^{0}(h(s)-\delta)^{+} d s
$$

which are uniformly distributed in the torus.

- If $\delta>0$ is small, then $\lambda(\delta)>0$.
- Divide the torus into smaller squares with side $\kappa N^{\alpha / 3} \sqrt{\log N}$.
- With high probability each of the small squares owns at least one center at time $\psi(0)$.
- This makes $T_{N} \leq \psi(0)+O\left(N^{\alpha / 3} \sqrt{\log N}\right)$, and so

$$
T_{N} / N^{\alpha / 3} \log N \rightarrow 2-2 \alpha / 3
$$

Thank You

